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Abstract 

Our overall goal is to understand and develop a novel light-driven approach to the controlled 

growth of unique metal and semiconductor nanostructures and nanomaterials. In this 

photochemical process, bio-inspired porphyrin-based photocatalysts reduce metal salts in 

aqueous solutions at ambient temperatures to provide metal nucleation and growth centers. 

Photocatalyst molecules are pre-positioned at the nanoscale to control the location and 

morphology of the metal nanostructures grown. Self-assembly, chemical confinement, and 

molecular templating are some of the methods used for nanoscale positioning of the 

photocatalyst molecules. When exposed to light, the photocatalyst molecule repeatedly reduces 

metal ions from solution, leading to deposition and the synthesis of the new nanostructures and 

nanostructured materials. Studies of the photocatalytic growth process and the resulting 
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nanostructures address a number of fundamental biological, chemical, and environmental issues 

and draw on the combined nanoscience characterization and multi-scale simulation capabilities 

of the new DOE Center for Integrated Nanotechnologies, the University of New Mexico, and 

Sandia National Laboratories. Our main goals are to elucidate the processes involved in the 

photocatalytic growth of metal nanomaterials and provide the scientific basis for controlled 

synthesis. The nanomaterials resulting from these studies have applications in nanoelectronics, 

photonics, sensors, catalysis, and micromechanical systems. The proposed nanoscience 

concentrates on three thematic research areas: (1) the creation of nanoscale structures for 

realizing novel phenomena and quantum control, (2) understanding nanoscale processes in the 

environment, and (3) the development and use of multi-scale, multi-phenomena theory and 

simulation. Our goals for FY03 have been to understand the role of photocatalysis in the 

synthesis of dendritic platinum nanostructures grown from aqueous surfactant solutions under 

ambient conditions. The research is expected to lead to highly nanoengineered materials for 

catalysis mediated by platinum, palladium, and potentially other catalytically important metals. 

The nanostructures made also have potential applications in nanoelectronics, nanophotonics, and 

nanomagnetic systems. We also expect to develop a fundamental understanding of the uses and 

limitations of biomimetic photocatalysis as a means of producing metal and semiconductor 

nanostructures and nanomaterials. The work has already led to a relationship with InfraSUR 

LLC, a small business that is developing our photocatalytic metal reduction processes for 

environmental remediation. This work also contributes to science education at a predominantly 

Hispanic and Native American university. 
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DOE/BES/NSET Annual Report on Growth of Metal and Semiconductor 

Nanostructures Using Localized Photocatalysts 

Introduction 

The focus of these studies is a novel light-driven catalytic approach to the controlled 

growth of new metal and semiconductor nanostructures and nanomaterials. The pre-positioned 

photocatalysts create new and controlled metal nanostructures when exposed to light by 

continuously reducing metal ions in their vicinity. Self-assembly, chemical confinement, and 

molecular templating are some of the methods for nanoscale positioning the photocatalyst 

molecules. Under controlled exposures to light, these photocatalysts continuously reduce metal 

ions in the vicinity of the molecule, leading to the controlled synthesis of new nanostructures and 

nanostructured materials. 

To realize these goals, fimdamental biological, chemical, and environmental issues must 

be addressed successfully. Toward these ends, we have coupled the vast nanoscience 

characterization capabilities of the University of New Mexico and Sandia National Laboratories 

together with strong emphasis on multi-scale modeling and simulations processes at the 

nanoscale to advance the knowledge base in this new area of nanoscience. The research is also 

associated with the new Sandiaos  Alamos Center for Integrated Nanotechnology (CINT) and 

the researchers have access to these new nanoscience facilities. Together, these experimental 

and theoretical studies are elucidating the processes involved in the photocatalytic growth of 

metal nanomaterials and are providing the scientific basis for controlling these processes. The 

resulting nanomaterials from these studies will likely have applications in catalysis, 

nanoelectronics, and photonics. 

The studies have concentrated on three thematic nanoscience research areas, including (1)  

the creation of nanoscale structures for realizing novel phenomena and quantum control, (2) 

understanding nanoscale processes in the environment, and (3) the development and use of 

multi-scale, multi-phenomena theory, modeling, and simulation at the nanoscale. The research is 

expected to significantly impact both nanotechnology and environmental technologies. The 

studies could lead to nanoscale devices, manufacturing processes, and biosystems. 

Background. In large part, the proposed work stems from an effort by Professors Werner 

Lutze, Eric Nuttall, and John Shelnutt to improve on the ability of bacteria naturally resident in 
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soil to reduce heavy-metal wastes to nanometer-size precipitates by using specific enzymes from 

the bacteria instead of the bacteria themselves. The iron-porphyrin-containing enzymes (e.g., 

cytochromes cj) of these bacteria catalyze the in situ chemical reduction of soluble metal ions to 

insoluble metals, metal alloys, or compounds. The enzymatic reactions were found to mostly 

produce nanoscale metal particles, although self-assembly of Se’ nanowires was found for 

selenate. 

Subsequently, it was found that some porphyrin-based photocatalysts worked just as well 

as the enzymes. These biomimetic photocatalysts do not require the addition of a strong 

inorganic chemical reductant because light energy is used to generate a strongly reducing 

porphyrin radical anion that can reduce the metal ions. (See Scheme 1 .) Only a weak electron 

donor such as a tertiary amine is needed. More to the point, photocatalysts differ from simple 

chemical reductants for creating metal nanostructures in that they act like a molecular ‘metal 

pump’, continuously producing zero-valent metal atoms at the site of the molecule as illustrated 

in Scheme 1. Each photocatalyst molecule can potentially grow a nanowire or other nanoscale 

metal structure as zero-valent metal is generated. 

The photocatalytic growth mechanism is 

somewhat similar to the catalytic growth of carbon 

nanotubes. In the carbon nanotube case, a metal 

nanoparticle (e.g., Ni, Co) catalyzes the growth of 

the nanotube from carbon in the vapor phase. The 

nature of the catalytic particle, the details of the 

TEA 

local axis at Scheme 1. Reductive photocycle used to reduce 
metal ions to zero-valent metals. SnP: tin(IP7 

initiation of growth are some of the factors porphyrin, TE.4: triethanolamine: M: metal. 
Quantum eficiency is approximately 0.5. 

and the graphitic 

determining the structure and electronic properties 

of the resultant carbon nanotube. In a similar way, the photocatalyst molecule (upon irradiation 

with visible light) can grow a metal nanostructure. The nanostructural properties are determined 

by the photocatalyst molecule, its interactions with metal atoms and ions, the properties of metal 

itself, the solution conditions, the light intensity and duration of exposure, and in some cases the 

presence of confined space surrounding the photocatalytic reaction. 



Detailed Description of Results 

Metal nanostructures are of considerable interest because of their importance in catalysis, 

photochemistry, sensors, tagging, and optical, electronic, and magnetic devices. Metal 

nanostructures have been synthesized in many forms, ranging from conventional metal colloids 

to modern near-monodispersed nanoclusters, shape-controlled nanocrystals, and other 

nanostructures such as wires and sheets. Nanostructured platinum is of particular interest for 

many applications, including catalysis, sensors and other devices. While a few platinum 

nanostructures have been reported, including 

nanoparticles, nanowires, nanosheets, and 
I 

others, the synthesis of additional types of I 
nanostructures is highly desirable and 

potentially technologically important. 

New methods for the synthesis of metal 

nanostructures are needed for providing the 

desired reproducibility and control over 

properties required for advanced technological 

applications. A recognized goal of these new 

synthetic approaches is Over the Figure 1. HAADF scanning TEM image of the three- 
composition, size, surface species, solubility, dimensional platinum dendrites grown in the presence of 

Brij-35 micelles and in the absence of photocatalyst 
stability, isolability, and other functional Inset. a Koosh@ ball 

properties of the nanostructures. For example, 

shape-controlled platinum nanocrystals have been synthesized by El-Sayed and coworkers using 

a capping polymer material, giving mixtures of tetrahedral, cubic, irregular-prismatic, 

icosahedral, and cubo-octahedral nanoparticles. The shapes produced are determined by 

interfacially directed control over the relative growth rates of different crystalline faces. As 

another example, nanosheets have been produced by reduction of platinum-chloride intercalation 

compounds confined between graphite layers. 

With similar goals of synthetic control in mind, we have discovered and elucidated a method 

of synthesis that leads to novel types of fractal-shaped platinum nanostructures of controlled 

sizes. This synthetic method is based on a seeding and fast autocatalytic growth approach in 

which an aqueous solution of platinum salts is reduced by ascorbic acid in the presence of 
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surfactant. 

seeding/autocatalytic growth 

approach employed by us 

produces nanodendrites like 

those shown in Figure 1, which 

grow by interfacially directed 

autocatalytic reduction of 

platinum 

seeds in 

solution. 

onto Pt nanoparticle 

an aqueous surfactant 

To our knowledge, 

Figure 2. TEM images of platinum nanostructures produced in the 
presence ofSDS without (a) and with (b) photocatalyst and their respective 
sue distributions (Insets). Average diameters were measured for 100 
nanostructures and their frequencies are plotted in the inset graphs. The 
average size and the standard deviations are given in the plots. along with such metal1ic Platinum the percentage ratio of the standard deviation to average sue 

nanodendrites have not been 

observed previously. Our main goal for the first year has been to fully understand the chemical 

and photochemical processes involved in the formation of these platinum nanodendrites and 

similarly synthesized nanofoams. Most importantly, we have clarified the use of porphyrin 

photocatalysis to control the size and uniformity of these nanostructures. 

The photocatalytic reduction of platinum salts by the SnP is accomplished in the presence of 

visible light and an electron donor (ED), ascorbic acid in this case. The SnP photoreaction is a 

reductive photocatalytic cycle, which has been used previously in the photosynthesis of reduced 

methylviologen and to evolve Hz in the presence of colloidal Pt. In the present photoreaction, 

Pt" is reduced according to the following simplified equations: 

SnP+hv + SnP* 

Snp* +ED + SnP" + ED, 

2snp" + Pt*+ - 2snP + PtO 

Absorption of visible or UV light by the SnP yields the long-lived excited triplet z-n* state, 

SnP*, which is rapidly reduced (SnP*/SnP-', +1.1 V) by an ED. The product is a long-lived (-10 

seconds) radical anion, SnP-', which is a strong reductant (SnP/SnP', -0.66 V) capable of 

efficiently reducing a variety of metal ions including Ag, Au, Hg, Pb, Cu, and Pt to the zero- 
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valent metals. Reduction of the metal regenerates neutral SnP, which again becomes available to 

absorb light and initiate a successive photochemical cycle. 

In the case of micellar surfactant solutions, slow reduction of Pt(I1) by ascorbic acid yields 

seed nanoparticles that autocatalyze the reduction reaction. The fast autocatalytic growth from 

the seeds produces three-dimensional platinum nanodendrites of diameters ranging from 6 to 200 

nm as shown in the scanning TEM image of Figure 1. Nanodendrites of uncontrolled size are 

produced by slow reduction of Pt(I1) by ascorbic acid to produce small seed particles, which then 

grow rapidly by autocatalytic reduction of Pt(I1) into the dendrites. The surfactant micelles 

themselves can have negatively charged head groups (sodium dodecylsulfate, SDS) or polar 

headgroups (Brij-35), but surfactant must be present to obtain the nanodendrites. These 

nanostructures were not initially recognized as dendrites, but thought to be nanoparticle clusters 

and were modeled by DFT methods as Pt particles on a micelle. However, the true dendritic 

nature was only fully realized after 2-dimensional dendrites were discovered. 

When photocatalyst and light are present, the size of the nanodendrites is smaller and more 

uniform as shown in Figure 2. Control over the size of these dendritic nano-structures is 

conveniently realized by using a tin-porphyrin photocatalyst to rapidly generate an initial 

population of growth centers. These seed particles then grow by the rapid autocatalytic 

reduction of Pt(I1) into the dendrites, limited only by the amount of Pt(I1) present in solution. 

The size can be controlled either by varying the concentration of the porphyrin photocatalyst 

under constant Pt(I1) concentration and illumination conditions, by varying the light exposure at 

constant Pt(I1) and porphyrin concentrations, or by varying the Pt(I1) concentration at constant 

light and porphyrin concentration. The effect of F 3 5  

varying the photocatalyst concentration on the size of - 30 

In the case of the three-dimensional nanodendrites, .g 
this photocatalytic seeding approach can be used to IO 

8 5  produce nanodendrites with average sizes in the range ~~~~ 0 10 20 30 40 50 60 70 80 

the nanodendrites is illustrated in Figure 3. 

= o  
of 10 to 50 nm and narrow size distributions. Under 

(Pt/SnOEP)ln the highest photocatalyst concentration conditions, 
Figure 3. Nanostructure diameter versus the size can be reduced to the point where only -3-nm cube root of the pt-to-porp&rin molar ratio (a 
measure of the nanostructure volume per growth diameter Pt particles are formed. The effects of light 
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exposure and porphyrin 

concentration on the size 

of the nanodendrites were 

also evaluated in detail as 

describe in a full article 

submitted to the Journal of 

the American Chemical 

Society. Besides 

demonstrating the ability 

to control size, these 

studies also verify the 

proposed 

seeding/autocatal ytic 

growth mechanism. 

Figure 4. Foam-like balls composed of platinum nanosheets grown at the 
interfaces between aggregated DSPC liposomes. The balls have a uniform sue  
because the porphyrin photocatalyst initiates growth within the liposomal 
aggregates, and growth occurs along the interfaces between the liposomes in a 
spherically symmetric manner until the Pt(I0 is exhausted. (a) SEM image of the 

IC) Under certain 
condition the foams the growth centers are close enough so that growth leads to 
a continuous phose, which retainr the nanoscale pore size dictated by the 

When large liposomes platinum foam balls. (b) TEM image of the foam balls. 

are used as a 
dendritic disk-like sheets liposomal template. 

(nano-caps) or solid foam-like nanomaterials are produced at the liposome surface. Some of the 

nanostructured Pt materials produced are shown in Figure 4. The particular nanostructure 

obtained depends on the solution conditions and size of the liposomes. Some control over the 

morphology is provided by the diameter of the ternplating unilamellar DSPC liposomes. The 

large cavities in the foams are determined by the liposomes size; when 65-nm liposomes are used 

in the reaction, the cavities in the foams have this average size, and similarly when 120-nm or 

165-nm liposomes are used instead, the cavities in the nanofoams reflect the larger liposomal 

size. 

We have achieved additional control using a porphyrin photocatalyst. When the porphyrin 

photocatalyst is incorporated into the liposomes, exposure of the reaction solution to 

incandescent light produces smaller balls of the foam and a more uniform ball size distribution. 

Varying the light exposure and porphyrin loading at constant platinum salt concentration 

determines the size of the foam balls and even gives continuous foam phases under certain 

conditions. 
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The platinum metal foams are also 

porous at a smaller scale than the diameter 

of the liposomes. The arms of the 2- 

dimensional Pt sheets (-2 nm thick) on the 

liposomal surface are separated by -1-2- 

nm spaces, providing small crevices 

through which small chemical species have 

access to the lipid bilayer (Figures 5(b) and 

5(c)). This porosity is particularly evident 
in the isolated nanosheets or nano-caps that 

can be grown on the liposomes under 

certain conditions. The nanocap growth is 

illustrated in Figure 5(a), and the TEM 
Figure 5. Dendrrtic platinum nanocaps templated by 

images of the nanocaps clearly show the liposomes. (a) Illustration of the growth of Pt nanocaps on 
the liposomal surface; other possible growth mechanisms are 

dendritic nature Of these 2-dimensional discussed in the text. (b) HAADF scanning TEM image of 
three platinum nanocaps grown on 160-nm diameter DSPC 
liposomes. (c) TEM image of a large dendritrc Pt nanocap 
made usrng DSPC liposomes and (Inset) its electron 
dfiaction panern. The surfactant assemblies cannot be seen 

applications in catalysis because of their in the TEM images because of the lack of contrast with the 
much denser Pt and the interference from the carbon jZm of 

high surface area, the ability to Control theTEMgrid. 

their porosity on different length scales, and the possibility of tailoring their structural stability. 

d 

--- 
nanostructures. 

ne metal foams have 

Fuel cells may be one commercial area in which the platinum nanofoams may have advantages. 

For the small three-dimensional platinum nanodendrites in Figure 2(b), we have demonstrated 

that they are functional catalytic/photocatalytic units capable of H2 evolution from water. The 

photocatalytically active porphyrin molecule likely remains associated with surfactant in the 

nanostructure that it nucleated and it can act as a photosynthetic system. Since colloidal 

platinum is a well-known catalyst for H2 evolution from water in artificial photosynthesis 

systems, the Pt nanostructure and the associated porphyrin photocatalyst should therefore be able 

to generate Hz in the presence of light and an electron donor. This HZ photosynthetic chemistry 

is similar to the reaction mechanism described above for Pt(I1) reduction, except that SnP-' 

provides electrons to Hf at the Pt metal surface to produce hydrogen. To see if hydrogen 

evolution was occurring, the reaction mixture containing the (12-nm) three-dimensional platinum 
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dendrites and associated porphyrin photocatalyst was 

irradiated with room light in the presence of ascorbic 

acid. After two months, the head-space of the sealed 

reaction vessel was analyzed by gas chromatography, 

and the presence of hydrogen was confmed (-30% 

by volume). Two interesting aspects of this catalytic 

reaction are that H2 evolution is observed even in the 

presence of the surfactant coating on the 

nanodendrites, and that the porphyrin delivers its 

strongly reducing electrons directly to protons at the F't 

surface without the aid of a relay molecule such as 

methylviologen, as has been used in some previous 

studies. 

7!Lfd 0 0 50 100 '150 200 250 3w 

Irradiation Time (minutes) 

Figure 6. Photocatalytic reduction of water to 
hydrogen by the platinum nanoshlctures, 
comuosed of the platinum nanodendrite, 

250 3w 

surjactant, and SnOEP, with added SnUroP (80 
m). The Pt nanoshuctures are diluted into an 

suffer from poor light-harvesting ability because of ascorbic acid (ED) solution containing the Sn 
uroporphyrin for the measurement. Water is 

turnover rate of 33 hr-' in terms of SnUroP) by 

supplied to the surface of the Pt catalyst. 

The nanodendrite-surfactant assemblies probably 

the low concentration of the light-absorbing porphyrin reduced at rates as high as 6 pol-hr" (H2 

per nanodendrite and the Opacity of the colloidal electrons from the sn uroporphyrin anions 

solution. To address these deficiencies, water-soluble Incandescent white light intensiQ is 

sn uroporphyrin was added to an ascorbic acid cmJ-s.', but mostly light with wavelengths in the 
region of the Soret band of the porphyrin is 

solution conthing only a small amount of the absorbed. Reaction conditions are: (a) low Pi 
(6,s m) and high ascorbic acid concenhation 

nanodendrite mixture. In this case, H2 evolution is (200 mM) and e) high Pt concentration (65 m) with low ascorbic acid concentration (60 

are (a) 390 hi' and (b) 14 hi'.  
greatly accelerated, consistent with increased light mw, H2 

flu and the additional light harvesting provided by 
rates in terms of atomic Pt 

the added tin porphyrin. As shown in Figure 6 ,  hydrogen evolution increases linearly for hours 

with turnover rates as high as 390 h-' (mole Hz/mole atomic Pt). Given these findings, 

nanodendrites can be viewed as functional nanocomposites consisting of the platinum dendrite, 

the adsorbed surfactant and possibly ascorbic acid, and the associated active photocatalyst. 

We have made some progress on the use of photocatalytic metal reduction as a means for 

removing heavy metals from water. The work has focused on two areas-identifying an electron 

donor compatible with environmental uses and determining which metals may be removed and 

to what level. A small business (InfraSUR LLC) is developing this method of waste remediation 
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under the name NanoMOR with the 

intention of commercializing a 

reactor based on the process. The 

efforts this year have focused on 

using benign electron donors like 

ethanol, which is already used for 

purification of municipal water 

Supplies, and on removing cr(vI), Figure 7, (a) Platinized liposomes? (b) Liposomes coated with 

which is removed by the process to 
nanometer-thick palladium dendritic sheets. 

undetectable levels. 

Description of Objectives 

Now that we have obtained a full understanding of the role of photocatalysis in the platinum 

reduction reaction and characterized many of the Pt nanostructure that result, we are in a better 

position to exploit this new understanding to tailor desired nanostructures and nanomaterials. 

Several new opportunities for creating new functional nanostructures are evident and will be 

pursued in the next year. 

One intriguing possibility that has arisen from our work this year is the chance that we can 

make individual liposomes coated with nkometer-thickness platinum sheeting. TEM images 

suggest that this possibility is realistic as shown in Figure 7. Although the platinized liposomes 

(Figure 7(a)) appear to have collapsed when dried on the TEM grid, they may be structurally 

sound while wet, or in solution, or when more wholly formed under optimal synthesis 

conditions. In addition, palladium also seems to form sheets on the liposomes as shown in the 

TEM image in Figure 7(b). 

Very recently, we have observed another type of metallized liposome, which is shown in the 

TEM image in Figure 8. Based on density profiles of thes nanostructures, the liposomes appear 

to have been coated with palladium grown in the form observed for the micelle-templated 3- 

dimensional dendrites instead of the nanometer-thick sheets, Le, they have the appearance of the 

3-dimensional nanodendrites but are hollow indicating an intact liposomal interior. These 

structures might serve as structural and functional units of nano-constructs such as a biomimetic 

chloroplast like that illustrated in Figure 9. We will explore the possibility of reliably 



synthesizing such nanostructures and determine some of their physical and chemical properties. 

As just indicated, another opportunity that has arisen in the last few weeks is the possibility of 

making palladium nanostructures analogous to the platinum structures that we have studied 

extensively in the current year. Only a few experiments have been done with palladium, so we 

would like to further explore the differences and similarities of the synthesis using the 

photocatalytic/autocatalytic growth mechanism using these two metals and evaluate other 

possible metals for making such nanostructures. 

Our original idea was to synthesize nanostructures purely photocatalytically, i.e., without any 

autocatalytic reduction, which is inherently uncontrollable. 

This is possible with other metals, e.g., silver. In the next 

year, we will turn our attention to silver and other metals 

in hopes of demonstrating our original idea of pre- 

positioning the porphyrin photocatalyst and then growing 

metal at the location of the photocatalyst molecules. In 

this regard, we have initiated studies of DNA-porphyrin 

complexes as templates for producing metal 

nanostructures such as nanowires. 
Figure 8. Palladium-coated liposomes. 

Another approach is use the interface between an The pd dendrites on the liposome su$ace 
are similar to those formed by Pt on 

profile (Inset, shows 
Since the tin-porphyrin photocatalyst is that these 3-0 dendrites contain a liposome 

organic solvent and water to template formation of metal micelles, The 

nanostructwes, 

almost insoluble in water but readily soluble in organic 
and thus appear ‘hollow’. 

H- 

solvents and the metal precursor and the electron donor 

are highly soluble in water, the metal reduction must take 

place only at the organic/aqueous interface. In 
preliminary experiments, we found that metal reduction 

at the interface facilitates the growth of planar particles. 

In this way we have successhlly made gold nano-plates 

H of large aspect ratio. These gold nanoplates are 

illustrated in Figure 10, which shows large quantities of 

triangular nanoplates with edge lengths of 200-300 nm 
and thickness of 30 nm. The photocatalyst was dissolved 

H’ 

ATPai . 
H’ 

H 

tr H‘ H 
H+ 

Figure 9. A biomimetic “chloroplast” 
based on platinized liposomes. 
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Fiaure 10. la) TEM imarze o f  small Au nanoulates formed at the interface between organic and aqueous solution 
phases (b)$ (c) SEM imaies if the Au nanopliter 

" 

in benzene, while the gold precursor, HAuClOd, and 

citric acid (ED) were dissolved in water. Figure 9(a) 

shows the TEM image of the Au nanoplates supported 

on carbon with a copper grid. SEM images of the 

nanoplates on IT0 glass slides are shown in Figures 

10(b) and 1O(c). With higher acidity for the aqueous 

phase, triangular or hexagonal Au nanosheets with 

dimensions up to a few microns and thickness of - 30 

nm have been prepared. We will continue to explore 

this new approach to forming Au nanosheets in the 

next year. We expect that the Au nanoplates will have 

applications in single-molecule detection by surface 

enhanced Raman spectroscopy. 

Figure 11. Porphyrin nanofibers with 
embedded silver nanoparticles formed by 
ascorbic acid reduction of silver cyanide. 

Porphyrin nanofibers and rods are another templating material of interest to us for the 

photocatalytic synthesis of nanostructures. For example, preliminary results show that porphyrin 

nanofibers embedded with Ag nanoclusters are formed at the interface of the two-phase system 

composed of tin(1V) octaethylporphyrin in benzene, K[Ag(CN)z], and ascorbic acid in water. As 

shown by the TEM images in Figure 11, the nanofibers are of a few microns in length and 20-50 

nm in diameter, with embedded Ag nanoparticles of -5 nm in diameter. We will further 

investigate these nanofibers as well as several other methods of creating porphyrin nanofibers, 

which will serve as templates for photocatalytic reduction of metals and semiconductors in the 

next year. 
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